If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34=12t+t^2
We move all terms to the left:
34-(12t+t^2)=0
We get rid of parentheses
-t^2-12t+34=0
We add all the numbers together, and all the variables
-1t^2-12t+34=0
a = -1; b = -12; c = +34;
Δ = b2-4ac
Δ = -122-4·(-1)·34
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{70}}{2*-1}=\frac{12-2\sqrt{70}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{70}}{2*-1}=\frac{12+2\sqrt{70}}{-2} $
| 21=4.75x+3 | | 4x+4=-5x-41 | | 4(h+21)=3(h-2) | | -10=-14+14x | | x+(x+1/2x)=10 | | 8m+24=-8(5-3m) | | -8y-5+4=1 | | 2000=150+225s+3.50 | | 3(r+2)-r=r-4 | | 3a-3+3a=-3 | | -10(1-9x)=6(x-10) | | 49x^2+42x-16=0 | | 6k+4+8k=19 | | -7=-2/3x+5 | | 2-8s=4+5(6-10s) | | 4w-7w-5=16 | | 360°=a+90°+135°+75° | | |3g–1|=19 | | y=(0-3)²+1 | | -1-8x=-1-4x-4x | | 23w-5=21w+5 | | 72+6x=x² | | (8i)(-8i)=0 | | 7-4u=8+5(10-9u) | | 11.3l+10.1l+7=13.24 | | 5(d-6)=70 | | 4/7.n=8 | | 4(b-67)-2=94 | | 3.50*x+10=5.25*x-11 | | x^2/(.14-x)=5.4x10^-6 | | G=-5/2x | | X+4=2x-18 |